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ABSTRACT

Some recent results on the detection and estimation of signals

in the presence of noise are discussed. An exact confidence lower

bound is obtained for the discriminatory power of an estimated linear

discriminant function for signal detection. Information theoretic

criteria are suggested for the estimation of number of signals. A

new method is proposed for determining the number of signals and esti-

mating them in exponential signal models.
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1. INTRODUCTION

Some of the problems of signal detection considered by electrical

engineers can be described in terms of a linear model

Y + (1.1)

where is an n-vector signal, n is an n-vector noise variable perturb-

ing the signal during transmission and Y is the received message. The

general problem associated with the model (1.1) is that of detecting

the presence of a signal in a received message and estimating it when

present. Different types of problems arise depending on the nature of I

and n.

We consider two types of problems, one where is considered as a

specified vector- or a specified function of unknown parameters, and

another where r is considered as a stochastic vector distributed in-

dependently of the noise vector n.

The following notations are used. A' denotes the transpose of a

matrix A when its elements are real and A* the conjugate transpose of

A when its elements are complex.

(i) X " N (u,E), i.e., a real p-vector X has a p-variate real normal
p 7

distribution with the probability density function (p.d.f.) I

(2w)-p'2 j I-exp F (x-u)'E-(x-u)] •  (1.3) [.

(ii) X - N (uj,), i.e., a complex vector X has a p-variate complex nor-P
mal distribution with the p.d.f. ..........

,.'( )-PIEI-lexl, (~ ) z l x u .(1.4) ,,r.. . . i

N L %
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(iii) S - W (f,l), i.e., a real p x p positive definite matrix S has theP

Wishart distribution on f degrees of freedom with the p.d.f.

2-pf/2 [r (f/2)]-lILI-f/2 1Sl(f-p-1)I
2exp(-Iltrr -IS) (1.5)

P

where

(a) - p(p-l)/ 4 P (a-
r (i-I

(iv) S W (f,Z), i.e., a complex p x p positive definite matrix S has
p

the complex Wishart distribution with the p.d.f.

r r (f)]-lIEI-flvlf-Pexp(-trE- S) (1.6)
p

where

-p-)/2 p
r (a) - ir pp (a-i+l).
P i-i

2. PROBLEMS INVOLVING A FIXED SIGNAL

2.1 Test for a specified signal

%P Consider the model

X - + (2.1.1)

where $ is a fixed vector and n N (O,a Z) with a known scalar a and an
p

unknown covariance matrix E. Let S be a pxp positive definite matrix variable

such that S - W (f,Z). We have independent observations on X and S, on theP

basis of which we wish to test the hypothesis

04

4, °
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H = 0 versus H1 : - (specified). (2,1.2)

Rejection of H at a chosen level of significance would indicate that the
0

received message X contains the signal S and is not pure noise.

It may be noted that when p 1, the appropriate test of H0 is the one-

sided t test

a" X
t = x >.c if 6 > 0 (or < c if 6<0) (2.1.3)

(s/f)

on f degrees of freedom. When p > 1, one generally uses Hotelling's

'.4 2 a(f-p+l) I

which is distributed as F on p and f-p+l degrees of freedom. The test (2.1.4),

however, does not involve the specified 6. A more powerful test than (2.1.4)

is recently suggested by Khatri and Rao (1985b) based on the following con-

siderations.

Let C be a px(p-1) matrix of rank p-i such that 8VC = 0 and consider

the transformation V. (+
Y =( -- X , V = (SC). (2.1.5)

.'- kY2 ' C1

Then

N )a E*) under H0' " Np(0 0

N((86) , a-'*) under H

V .W (f,,) , E = (6:C) (2.1.6)

04
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and the problem (2.1.2) reduces to testing

H0 : E(Y1) = 0 versus H1  E(Y1) - 6' > 0

given E(Y2) 0 0. (2.1.7)

Such a problem involving a conditional test was considered in Rao (1946).

The appropriate test is t > t where

a)t a (f- +l) -1 X (2.1.8)
((l+aX'S -1X)sS'S -16-a(6 S-Ix) 2

* has t distribution on (f-p+l) degrees of freedom and t is the upper tail

a% point of the t distribution.

In testing (2.1.7), we used the condition E(Y2) = 0. But in practice

it may be necessary to cheek whether this holds. For this, we use Hotelling's

2  a(f-p+2) S 1  (6'S X(T - (X'S S - ) (2.1.9)

which has F distribution on (p-1) and (f-p+2) degrees of freedom.

The tests (2.1.8) and (2.1.9) can be extended to the case where n

* and S have complex normal and Wishart distributions respectively. For

• example, the test for Ho:V=O versus H : -6 is t > t where

(2(f-p+)] "6*S-iX
4.-.,. t = real part of - - (1.2.10)

[(a-1 +Xs-1 X)6*S-1 6_6*S -1xxs 11
" ..

• .has t distribution on 2(f-p+1) degrees of freedom. Further the hypothesis

that E(Y2) = 0 is tested by Hotelling's

0-
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T 2  a(f-p+2) (X*S-I_ *S XX*S6 )(2.1.11)
p-1 6*s- 6

which has F distribution on 2 (p-l) and 2(f-p+2) degrees of freedom.

A 2.2 Discrimination between noise and a specified signal

In Section 2.1, we considered the problem of testing for pure noise

against a specified signal on the basis of an observed message X and an in-

'it dependent estimate f-1S of E. The interpretation of such a tcst at a chosen

.4- level of significance is not simple, specially when the same estimate f S

of E is used repeatedly to test for signals in a number of incoming future
01

messages. In order to provide a satisfactory solution, we consider the prob-

lem of signal detection as one of discrimination between alternative populations

N (0,), (or N(04)), and N (6,Z), (or N (6,)), when Z is unknown but anp p P P

estimate f- 1S of Z is available. In such a case, the estimated linear

--- discriminant function (LDF) is proportional to

y 6'S-1X, (or 6*S- x). (2.2.1)

,,.

.s"'." -[In the sequel we follow the practice of giving the results for the real case

'. first and then for the complex case within brackets as in (2.2.1)]. The

discriminatory power of (2.2.1) when applied to future observations is a

-. monotone function of the discrimination index (DI)

p(S;) =[E(yjS, (=6) - E(yIS,=O)]2

V(y5S)

S'S-I 6 * -1

= , (or o(S,Z) ). (2.2.2)
6,S-zs-1 6S zs-1 -

.e

%,"

V. . -. ':- ',-.; N '.'. .'.'. .",?," i.;. ' '¢ .v?<,.-..- -- -.. ?"< - - -. ':-i.i'i.2-">." .' ' '-°> >,-.
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If E is known, the true LDF is 6'Z-IX, (or 6*E- X), and the optimal DI is

p(EE) = S'E-l6,(or Q(r,E)=6*E-1 6) (2.2.3)

which is greater than or equal to (2.2.2) by the Cauchy-Schwartz inequality,

so that there is, in general, loss of information in using an estimated E.

The expression (2.2.2) involves the unknown covariance matrix E, and there-

fore, the realized discriminatory power by using a particular estimate of

E in classifying future observations remains unknown. We raise the question

Nas to whether an estimate of (2.2.2) can be obtained in terms of known (observed)

values to provide some idea of the performance of the estimated LDF. One

such is the plug-in estimate p(S,f- S), for p(S,f-IS)), but it is known to be

highly biased estimator of (2.2.2). In a recent paper, Khatri and Rao (1985a)

provided a satisfactory solution, which is as follows.

It is shown that in the real case

B 5 and G - (2.2.4)
(6,E- 6) (V'-s-I_1d) 6'S-I6

- are independently distributed with p.d.f. (probability density function)

Sof B as

f+ Ii' ]!2 (f-p)/2(lb (p-3)/2
b (1-(2.2.5)

f -p+2 p-i.. r(_2 ) r(_)

and that of G as

1' I -g/2 (f-p+l)/2
e g . (2.2.6)

2

: 2"'."
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In the complex case, defining B and G with 6' replaced by 6* in (2.2.4),

it is shown that B and G are independently distributed with the p.d.f. of

B as

r(f+l) (f-p+l)()p-2 (2.2.7)
r(f-p+2) F p- )

and that of G as

1 -g (f-p)
r (f-p+1) e . (2.2.8)

The distribution (2.2.7) was earlier obtained by Reed, Mallet and Brennan

(1974). The distributions (2.2.3) - (2.2.8) are independent of the unknown

parameters which enables us to draw inferences on p(S,Z), (or P(S,E)), through

the pivotal quantities B and G, (or B and C) as discussed below.

1. Using the expressions for the moments of the beta distribution

(Rao (1973), p. 168)

E(B or B) f-p+2

f+l

we have

* f-p+2 , -1

E[p(S,E)),(or ;(S,E))] = f-+ [6 '6,(or 6*'-16)]. (2.2.9)

If the average efficiency is to be maintained at about half the optimal

efficiency, then from (2.2.9) we have

f-p+2 I
2f+l - or f 

2 p (2.2.10)

for both real and complex cases, i.e., the degrees of freedom on which Z5

is estimated should be at least twice the number of components of the signal.

04

..........................
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This result for the complex case is mentioned in Reed, Mallet and r,>.

(1974). Similarly we can equate the ratio in (2.2.9) to any desired ri:

other than (1/2) and find the degrees of freedom f needed for the estlz,

of E.

2. Perhaps, a more satisfactory way of using the distributions ..

and (2.2.7) is as follows. Let b , (or b ), be the lower a% point of theand

distribution (2.2.4), (or (2.2.7)). Then we can make the confidence state-

ment that

p(S,Z) > b a'Z-6, (or p(S,Z) > b (2.2.11)

with a confidence coefficient of (1-a)%.

3. The results (2.2.10) and (2.2.11) still involve the unknown quantit:

Z. We raise the question, whether the actual magnitude of p(S,E) for given

S can be assessed through known values. Using the joint distribution of

B and G as in (2.2.5) and (2.2.6) it is shown in Khatri and Rao (1985a) that

2 2
E[p(S,Z)-gD ] attains its minimum at g = (f-p+2)(f-p-l)/f(f+l) so that

(S, Z) = (f-p+2)(f-p-3) D2  (2.2.12)

f(f+l)

which does not involve unknown parameters, in a close approximation to

P(S,E). Similarly

P(S,E) = (f-p+2)(f-p-) D2  (2.2.13)

f(f+1)

is a close approximation to p(S,E).

4. We can also obtain the exact lower confidence bound to o(S,Z), which

provides a satisfactory answer to the problem raised. We define the random

variable

0X .-- ' ..... ,
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=~ ~ 1 ~ P(SE) -- fo(S,E)(2..4
2 BG~ 2 (or Z 22.14

D' D

which has the confluent hypergeotnetric distribution with the p.d.f.

e. rn-1 r(a+b)
P~mT ra 1(b,m-a+1;z) (2.2.15)

.9) a

where mn (f-p+1)12, a =(f-p+2)/2, b -(p-i)/
2, (or m =f-p+1, a =f-p+2,

b = p-1), and

'Y(b,c;z) - ro*b)- (l+t)c-b-1 (2.2.16)77___-bb- exp(-zt)dt.

-p0

The percentage points of this distribution at various levels are tabulated

in Khatri, Rao and Sun (1986). If z (or z )is the lower a% point of this
a a

distribution, then

2z z
-- P(SE) > 2 2

D~ (or P(SE) > - D )(2.2.17)

* provides the lower confidence bound to p(S,E), (or P(S,E)),with a confidence

coefficient of (1-a)%.

Several approximations to the distribution (2.2.15) are also obtained

* .1 Khatri, Rao and Sun (1986) when f is large compared to p, from which

fairly accurate percentage points can be easily obtained.

3. PROBLEMS INVOLVING A RANDOM SIGNAL

Following the recent papers by Wax and Kailath (1984) and Bai, Krishnaiah

and Zhao (1986), let us consider the model

X(t) A s(t) + n(t), t =t 1i*l .. tn9 (3.1)

4.%
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. where X(t) is a p-vector message received at time t, s(t) is a q-vector random

signal, n(t) is a p-vector noise component and A is an unknown pxq matrix

with elements independent of t. The following assumptions are made regard-

ing the model (3.1).

(i) s(ti), i 1 1,...,n, are i.i.d. with the common distribution

N (0,T), (or N (0,1)), q < p.. q q

(ii) n(ti), i 1,...,n, are i.i.d. with the common distribution

N Np(O'2 (or N (0,o2

(iii) s(ti) and n(t ) are independent for all i and j.

* ~Under these assumptions

2- 2

X(t) - N (0,E2 = E) (or N (Or = r+O2
p 2-.. P 2

*where

r AA', (or AA*) (3,2)

is of rank q < p. Further, if

n n
S2  'X(ti)X(ti) (or [ X(ti)X(ti)*) (3.3)

then

S2 - W(n,E2), (or S2 -W(n,Z2)). (3.4)

We consider the problem of testing

H0 : Rank r - q<p versus rank r is arbitrary (3.5)

I.? and also of estimating q, the rank of F.
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3.1 Case 1 =

t c2
In this case E22 r+21, and it is well-known (see Anderson (1963)) that

the likelihood ratio criterion for testing (3.5) is

L q+1'"p ) S
I ~ ~~~q [(q+..p)/(p_q) ] s (p-q)(3.I

q+1 p

where Z >°.., are the eigen values of n-1 S and s = n/2 in the real case

and s - n in the complex case. In large samples, i.e., as n

-2 log L - x 2([(p-q)(p-q+1)/2]-1), (or X 2([(p-q) 2-1]). (3.1.2).1 q

As for the estimation of q, Zhao, Krishnaiah and Bai (1986a) suggested

a new information theoretic criterion which is more general than those proposed

by Akaike (1972), Schwartz (1978) and Rissanen (1978). Their method consists

in choosing as an estimate of q the number q such that

I(q,C) =min{I(O,C ),...,I(p-1,C)} (3.1.3)
n ~ nn

where.

.(k,C) = - log Lk + C v(k,p)

v(k,p) = 1 + [k(2p-k+l)/2],(or 1 + k(2p-k))

which is the number of free parameters when rank r = k, and C are such that
n

lim (Cn/n) ,

lim (C n/loglogn) = . (3.1.4)

% r

'.'4"o

U,
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Zhao, Krishnaiah and Bai (1986a) proved that q determined as in (3.1.3) is a

strongly consistent estimate of q.

3.2 Case 2 : - I, a 2=1

In this case, the likelihood ratio criterion for testing the hypothesis

(3.5) is derived by Zhao, Krishnaiah and Bai (1986) as
.4.

log Lq - s 2 (log Zi + 1-Zi) (3.2.1)
i=l+min(r ,q)

where s = n/2 in the real case and s=n in the complex case and T is the

0 T number of eigen values 1 which are greater than unity. The large sample

2distribution of -2 logL is no longer X . But as suggested by Rao (1983)
q

in a slightly different situation the test of the hypothesis in this case

2can be carried Out in two stages, first as in Case 3.1 taking a as unknown,

and then examining whether a =1. However, the criterion of Zhao, Krishnaiah

and Bai can be used with (3.2.1) for the estimation of q, i.e., by minimizing

%.% - log Lk + C v(k,p) (3.2.2)
.- n

where C is as in (3.1.4) and
n

v(kp) = [k(2p-k+l)/2], (or k(2p-k)). (3.2.3)

3.3 Case 3 E arbitrary and a unknown

-.. In addition to S2 defined in (3.3), we suppose that another independent

variable S is observable and has the distribution

SI Wp(f,El), (or S1 - Wp(f,Z)). (3.3.1)

J
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Let Zi>...>Z be the roots of the equation in2
1 S2- f-1  = 0. The likelihood

ratio criterion for the hypothesis (3.5) is derived by Rao (1983) in the form

-2
p nti+f a n +ne%&z -2 log L -- - s log _ 2 n _] (3.3.2)

q i=q+l 2 n2 ^2f

2

where s = 1 in the real case and s = 2 in the complex case, and a is the

root of the equation

(P-q)n 2 = n2mi

f+n 2  iq+l n 2m +f
2  (3.3.3)

22
"-."As n2 and f-+ , the statistic (3.3.2) is distributed as

2 _ (p-q)(p-q+l) (or (-2 -)) (3.3.4)x ( 2 . . . (3 3 4

For estimating q, the method of Zhao, Krishnaiah and Bai is to minimize

- log Lk + C n (k,p) (3.3.5)k. n

where C is as in (3.1.4) and

v(k,p) = k(2p-k+l) + 1, (or k(2p-k) + 1). '3.3.6)

2

3;4 Case 4 : E is arbitrary and a2 = I

In this case the likelihood ratio criterion is derived by Zhao, Krishnaiah

and Bai (1986b) as

n2Z+f n2+f -n2

-2 log L s log 1 [(-- ) i (3.4.1)
q i-l+min(q,r) 2

% 2%%

-.-
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where s = 1 for the real case and s = 2 for the complex case, and T is the number

of which are greater than unity. The statistic does not have an asymptotic

2
X distribution but is useful in the estimation of q. As in other cases

we choose q to minimize

- log Lk + C v(k,p) (3.4.2)
n

where C is as in (3.1.4) and
2 n

v(k,p) k(2p-k+l) (or k(2p-k)) (3.4.3)

-." The estimates of q obtained in (3.2.2), (3.3.5) and (3.4.2) are strongly

consistent as n2 and f-*o. Detailed proofs are given in two papers by Zhao,

Krishnaiah and Bai (1986a,1986b).

4. EXPONENTIAL SIGNAL MODELS

Let yt = t + It9 t = l,...,n, be observations taken at equal inter-

vals of time on signals corrupted by noise. The signal t is considered

to be of the form

",., sit s t
Et a1e ... + a e (4.1)

where a' = (al ... a) and s' = (s I ... s ) are unknown complex vector
m l', mn

parameters. Often the value of m, the number of signals (exponential terms

in (4.1)), is itself unknown and has to be considered as an essential

parameter under estimation. The noise components are taken to be indepen-

2
dently distributed with mean zero and common variance . The problem has

a long history starting with the pioneering work of Prony (1795) two hun-

dred years ago. In a series of papers Tufts and Kumaresan (see Kumaresan

IRS.

04V
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(1982), Tufts and Kumaresan (1982) and Kumaresan and Tufts (1982) and the

numerous references therein) suggested some new approaches to the problem

, based on Prony's parametrization of the signal process described below.

Prony (1795) observed that . as defined in (4.1) satisfy the re-

currence relations

~i+M+l + glj.m + + = 0, i=l, .,n-m-l, (4.2)

'" p wer g..

where g' (gi ... ,g,1) is a function of s, which may be regarded as an

alternative parameter to s. The equations (4.2) lead to the observationalV ..

O | equations

-Yi+m+l =glYi+M + g mYiI i=l,... ,n-m-1 (4.3)

which can be written in the matrix form

GY = 0, with Y' - (yl,... Yn)  (4.4)

"hoosing the (n-m-i) x n matrix C appropriately with each row containing

the row vector g' and a number of zeros, the position of g' being shifted

by one element when we go from one row to the next row. Much of the pre-

vious work is centered on the equations (4.3, 4.4) and the estimation of

g by minimizing

Y G GY or Y G GY/g'g (4.5)

fixing an appropriate value for m. Once g is estimated, exp(s.) are
A~. 1

obtained as the roots of the polynomial equation

m
-l -m s

+ g z + "'" + gz = . -- r r (4.6)
m n=I

-%
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and a is estimated by minimizing

(Y-xa) (Y-xa) (4.7)

taking

exp(s l) ... exp(s )

exp(sln) ... exp(smn) (4.8)

as fixed. Tufts and Kumaresan in the papers cited above make some re-

finements by starting with a larger value, say Z > m, and use the extra

*D terms to reduce the noise part of the model. However, it is not clear

whether minimizing (4.5) ignoring the correlations between the components

of GY lead to consistent estimators of the unknown parameters. It may be

noted that the covariance matrix of GY as defined in (4.4) is u2 GG in

which case the appropriate quadratic form to be minimized is

• ** ,-1
Y G (GG*) GY (4.9)

and not (4.4), although the minimiza-ion problem associated with (4.9) is

far more complicated.

It is shown (see Smyth (1985) and references therein) that the

estimates of a and s obtained from (4.6) and (4.7) using the g estimated

from (4.9) are, indeed, maximum likelihood estimates, i.e., those obtained
ii.!'

by minimizing

n sit s t

Sly -ale - - a e ! (4.10)
t=l m

4%.
with respect to a. and s., under the assumption that the error terms are

1 J

W. .0
normally distributed. We can also look upon the estimates of a. and s.

.r *% O 1

%
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obtained by minimizing (4.10) as non-linear least squares estimates without

any distributional assumptions. Smyth (1985) has developed an efficient

algorithm for obtaining g which minimizes (4.9), and then estimating s and

a through the steps in (4.6) and (4.7), which solves the non-linear least

squares problem (4.10) for given m.

. The choice of m can be made by a suitable information theoretic

model selection criterion such as the one used in the previous section.

If the minimum value of (4.10) is denoted by Rm, then under the assump-

. tion of normality of n t, the error components, the information theoretic

criterion takes the forme!

n log R + C (4 m) (4.11)
m n

where C are chosen to satisfy the conditions (3.1.4). The AIC criterion

(Akaike (1972)) corresponds to the choice C = 1, which may be sufficient
n

to provide a fairly accurate estimate of m.

However, a more relevant and satisfactory method in finite samples

is provided by the cross validation (CV) approach, although the computa-

tions may be extremely heavy. (See for instance papers by Rao (1984) and

-! Rao and Boudreau (1985) for such an approach in a prediction problem.)

In the CV method we leave one of the values, say yi, but replace

it 'y a variable Y. For any choices of Y. and m, using Smyth's algorithm,"1 1'

we cumpute

u-. n sit s t

R(Yi,m) = min TYt - ale - - 2 (4.12)

a,s t=l

where a' = (al...,am) and s' =Sl,.,S). Then for given m, by a

suitable computer program, we find v. such that

'4"°" °'

A- X



19

* R(y im,m) min R(Yi,m) (4.13)
Y.

... p 1

which provides y. as an estimate of Y. for given m. Then comparing

Yim with the observed yi, the cross validation error (CVE) is obtained as

n 2R*M 7i im) (4.14)

and finally m is chosen as that value for which R,(m) is a minimum.

As observed earlier, the computations involved in the above

procedure are extremely heavy. However, simplication may be effected

in some ways.

1. If n is large, we may choose every alternative or every third

value among the components of (yl,...'Yn) for cross validation. This

cuts down on the number of terms in (4.14) and reduces the computing

time considerably.

2. It may be noted that yim can be computed by an alternative

method as

-. m s.i

Yi= a.e J  (4.15)" j = l J

where a.j, sj, j=l,...,m, are the values minimizing the expression,

i-i m s.t n m s t':'~~ 1 7 " - 3,mi~ a t Y - aje T+ a e 2.gae
aLe + L 1yt -(4.16)-, t1 t=i+l

Due to the absence of the term y in (4.16), one cannot take full ad-

vantage of Prony's reparametrization. But if the optimum values a.

and s.j can be found directly through some other algorithm, then Yim

. :  can be obtained as in (4.15).

06..'

LN,.
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3. We defined R(Yi,m) as the minimum of the expression on the

right hand side of (4.12). For purposes of estimating m, one could use

an approximation

Im m si1t s mt 1R(Y.,m) = ae - .•. -a e (4.17)

R(. M) t a1eam• z t=lm

I where a. and s. are estimates obtained by methods such as those suggested

by Tufts and Kumaresan.
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